Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Asunto principal
Tipo del documento
Intervalo de año
2.
arxiv; 2023.
Preprint en Inglés | PREPRINT-ARXIV | ID: ppzbmed-2301.07535v1

RESUMEN

The relationship between electricity demand and weather has been established for a long time and is one of the cornerstones in load prediction for operation and planning, along with behavioral and social aspects such as calendars or significant events. This paper explores how and why the social information contained in the news can be used better to understand aggregate population behaviour in terms of energy demand. The work is done through experiments analysing the impact of predicting features extracted from national news on day-ahead electric demand prediction. The results are compared to a benchmark model trained exclusively on the calendar and meteorological information. Experimental results showed that the best-performing model reduced the official standard errors around 4%, 11%, and 10% in terms of RMSE, MAE, and SMAPE. The best-performing methods are: word frequency identified COVID-19-related keywords; topic distribution that identified news on the pandemic and internal politics; global word embeddings that identified news about international conflicts. This study brings a new perspective to traditional electricity demand analysis and confirms the feasibility of improving its predictions with unstructured information contained in texts, with potential consequences in sociology and economics.


Asunto(s)
COVID-19
3.
researchsquare; 2020.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-99500.v1

RESUMEN

Objectives: The pandemic of the coronavirus disease 2019 (COVID-19) continuously poses a serious threat to public health, highlighting an urgent need for simple and efficient early detection and prediction. Methods: We comprehensively investigated and reanalyzed the published indexes and models for predicting severe illness among COVID‑19 patients in our dataset, and validated them on an independent dataset. Results: 696 COVID-19 cases in the discovery stage and 337 patients in the validation stage were involved. The AuROC of neutrophil to lymphocyte ratio (NLR) (0.782) was significantly higher than that of the other 11 independent risk indexes in severe outcome prediction. The combination of NLR and oxygen saturation (SaO2) (NLR+SaO2) showed the biggest AuROC calculations with a value of 0.901; with a cut-off value of 0.532, it exhibited 84.2% sensitivity, 88.4% specificity and 86.8% correct classification ratio. Moreover, we first identified that principal component analysis (PCA) is an effective tool to predict the severity of COVID-19. We obtained 86.5% prediction accuracy with 86% sensitivity when PCA was applied to predict severe illness. In addition, to evaluate the performance of NLR+SaO2 and PCA, we compared them with currently published predictive models in the same dataset. Conclusions: It showed that NLR+SaO2 is an appropriate and promising method for predicting severe illness, followed by PCA. We then validated the results on an independent dataset and revealed that they remained robust accuracy in outcome prediction. This study is significant for early treatment, intervention, triage and saving limited resources.


Asunto(s)
COVID-19
4.
researchsquare; 2020.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-64080.v1

RESUMEN

Objectives: The pandemic of the coronavirus disease 2019 (COVID-19) continuously poses a serious threat to public health, highlighting an urgent need for simple and efficient early detection and prediction. Methods: We comprehensively investigated and reanalyzed the published indexes and models for predicting severe illness among COVID‑19 patients in our dataset, and validated them on an independent dataset. Results: 696 COVID-19 cases in the discovery stage and 337 patients in the validation stage were involved. The AuROC of neutrophil to lymphocyte ratio (NLR) (0.782) was significantly higher than that of the other 11 independent risk indexes in severe outcome prediction. The combination of NLR and oxygen saturation (SaO2) (NLR+SaO2) showed the biggest AuROC calculations with a value of 0.901; with a cut-off value of 0.532, it exhibited 84.2% sensitivity, 88.4% specificity and 86.8% correct classification ratio. Moreover, we first identified that principal component analysis (PCA) is an effective tool to predict the severity of COVID-19. We obtained 86.5% prediction accuracy with 86% sensitivity when PCA was applied to predict severe illness. In addition, to evaluate the performance of NLR+SaO2 and PCA, we compared them with currently published predictive models in the same dataset. Conclusions: It showed that NLR+SaO2 is an appropriate and promising method for predicting severe illness, followed by PCA. We then validated the results on an independent dataset and revealed that they remained robust accuracy in outcome prediction. This study is significant for early treatment, intervention, triage and saving limited resources.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA